AcresUSA.com links

Archive | Soil Fertility

Campus Composting

In 2009, with my retirement from Ohio University looming, I didn’t think my personal involvement in the construction and start-up of a class 2 campus composting facility would develop into such a large operation. Class 2 compost (according to the Ohio Environmental Protection Agency) consists of yard, agriculture, animal, or food waste, plus a bulking agent.

To get this project underway, thousands of yards of dirt on the campus’s periphery had to be moved to prepare the site and many yards of concrete were poured to construct the base of a metal pole barn, which would eventually house the composting machine.

Hauled by truck from Ottawa, Canada, the enormous composting machine was unloaded by crane and placed on the concrete pad.

The vertical posts were installed and metal siding attached. For power, electricity was connected and the solar array installed. Today, the Ohio University Composting facility also boasts a solar thermal system and waste oil heaters that use leftover oil from the university’s facilities operations. Skylights provide indirect lighting. The entire facility is self-sustainable. With a 10 kilowatt-per-hour built in 2009 and a 31.1 kilowatt-per-hour system added in 2012, the solar array produces more energy than is used in the operation.

Continue Reading →

Keep the Soil in Organic Movement

On Sunday, October 8, farmers and pioneers of the organic movement will assemble for a Rally to Keep the Soil in Organic, in Burlington, Vermont.  Join a tractor cavalcade at noon, led by the Brazilian drumming ensemble “Sambatucada” and a parade of farmers and organic eaters to the Intervale Center at 180 Intervale Rd. (parking at Gardeners Supply), followed by short speeches from leaders in the organic movement, including Senator Bernie Sanders (tentative), Eliot Coleman, Lt. Gov. David Zuckerman, Maddie Monty, Christa Alexander, and Pete Johnson. More than 50 regional farms are expected to attend.

Women lead the parade toward the 2016 Rally in the Valley in East Thetford, Vermont.

There are 16 rallies scheduled so far to publicly oppose the weakening of USDA Organic labeling standards and to demand that the National Organic Program preserve soil as the foundation of all organic farming. Rallies are being organized in England, Canada, Costa Rica and across the United States from California to Maine.

A large rally will take place in Hanover, NH on October 15 at 2 p.m.  The final rally will take place at the National Organic Standards Board (NOSB) meeting on October 31 in Jacksonville, Florida.

Keep the Soil in Organic: Farmers Weigh In

Pioneer Eliot Coleman has written, “The importance of fertile soil as the cornerstone of organic farming is under threat. The USDA is allowing soil-less hydroponic vegetables to be sold as certified organic without saying a word about it. Just when today’s agronomists and nutritionists are finally becoming aware of the crucial influence of soil quality on food quality, the USDA is trying to unilaterally dismiss that connection by removing soil fertility from the National Organic Program definition of organic. The encouragement of “pseudo-organic” hydroponics is just the latest in a long line of USDA attempts to subvert the non-chemical promise that organic farming has always represented. Without soil, there is no organic farming. The USDA is defrauding customers who expect certified organic crops to be grown on optimally fertile soil as they always have been.

Continue Reading →

Supplying Nitrogen: Tap into Nature

Human activity is affecting planet Earth to such an extent that natural scientists are naming this time the beginning of a new geological age/epoch called Anthropocene (the recent age of man) and ending what was the Holocene epoch (about 17,000 years ago to present).

We are no longer observers of nature, but significant influencers of what is happening to nature. The sheer weight of humans and their livestock is now bigger than the Earth’s wild animal population. Our activities are rapidly increasing the amount of CO2 in the air. That is an established fact, the effect of which is the only thing in dispute, i.e. will it get warmer or cooler and will we be wetter or dryer?

The temporary warmth is obvious in the Arctic. Although growers usually help to absorb CO2 by growing crops, their improper handling of crop residue or improper feeding of livestock can add the CO2 back into the air. However, farming’s bigger polluting effect concerns nitrogen.

Plants have always used N from the air by a variety of natural methods. Now the rate we are taking N out of the air is 50 percent higher than what nature has done for millions of years. Most of this industrially created N is now used for fertilizer. This industrial process was originally used to make munitions prior to World War I.

Continue Reading →

Soil Conservation Yields Economic Gains

Soil conservation practices such as growing cover crops and going no-till can result in an economic return of over $100 per acre, according to a set of case studies jointly released by the National Association of Conservation Districts and Datu Research, LLC.

Cover crops, like tillage radish, can improve soil health and structure.

Cover crops and no-till can limit soil loss, reduce run-off, enhance biodiversity and provide other benefits. Naturally, farmers who are considering adopting these soil conservation practices are keen to know how they will affect their farm’s bottom line.

“These case studies quantify for producers, policy-makers and researchers alike what the economic advantages of using no-till and cover crops are, and why it makes good sense for farmers to try them and for organizations like NACD to support and even incentivize their use,” said Jeremy Peters, NACD CEO. “We have loads of anecdotal data that says conservation practices benefit the land and producers’ pocketbooks, but now we have run the numbers and know how much.”

During the three-year study period, corn-soybean farmers experimented with cover crops and/or no-till, and quantified the year-by-year changes in income they attributed to these practices compared to a pre-adoption baseline. They found that while planting costs increased by up to $38 per acre: Fertilizer costs decreased by up to $50 per acre; erosion repair costs decreased by up to $16 per acre; and yields increased by up to $76 per acre.

The studies also found that with adoption of these soil conservation practices, net farm income increased by up to $110 per acre. Included in the farmers’ calculations was the considerable time they spent attending workshops or searching the internet to learn about no-till or cover crop practices.

“That time turns out to be an excellent investment, when bottom lines start improving,” said Marcy Lowe, CEO of Datu Research, which conducted the case studies in partnership with NACD. “Farmers who switch to these practices can see losses at first. But thanks to these case study farmers who are generously sharing what they’ve learned, that learning curve will speed up for other farmers.” Continue Reading →

Soil Lab Selection

Soil lab selection: How does anyone choose the right laboratory? Aren’t they all the same? Should you send a sample to several different labs and average the results? How do you get the samples to a lab and what is the turnaround time? Some homework needs to be done here.

These are all questions that I hear on almost a daily basis. All labs are not the same. This does not mean that one laboratory is better than another. They all provide a different “menu” of services. It is important to find a lab that provides all of the services that you require. Are you just looking for a soil analysis, or do you also need an irrigation water test or tissue analysis?

Laboratories can also choose from a number of methods or “recipes” to obtain results. Which method would be best for your soil type or crop? “Presentation” of results can also vary greatly from one laboratory to another. It is important that you can read the report and make use of the information it provides. These are all questions that you should consider before choosing a laboratory.

Menu of Services

Packages with various soil parameters are usually available, plus some a la carte choices. This will vary greatly from one laboratory to another. I think we all agree now that there is a lot more to soil than pH. Therefore, look at what is included in the soil package you are requesting. Continue Reading →

Carbon Cycling, Carbon Building

In this article I hope to provide some ideas concerning carbon cycling and how to effectively build soil carbonic organic matter. There seem to be three primary means by which we can increase a soil’s carbon content: carbon imports, carbon generation and carbon induction. Each of these possible methods can also offer other strengths to a soil-building program, compost can provide a biological inoculum, humates can provide a biological stimulant.

Adequate levels of functional organic matter and a robust soil digestive system are sorely lacking in most all agricultural soils. This lack of humic substances and biology significantly reduces a soil’s water-holding capacity and the ability to release nutrients, all of which leads to large losses in crop quality and yield.

Meanwhile, increasingly higher levels of atmospheric carbon or CO2 are being produced by the burning of fossil fuels and land desertification. Carbon sequestration — the term has been thrown around like a rubber ball. What does it really mean for agriculture? How can carbon be stabilized in soils most effectively?

Importing Carbon

There are three primary carbon imports: Humates or leonardite, and their derivatives such as fulvic and humic acids. The humic substances present in these materials generally provide very good nutrient exchange. Biochar is also a stable carbon import but not as active as leonardite seems to be. Compost can also be a viable carbon import with the added benefit of a strong biological component. Compost, however, tends to have a lower level of stable humic substances when compared with other materials. A fair proportion of compost can degrade over a period of a few years. Continue Reading →