AcresUSA.com links

Archive | Soil Fertility

Soil Testing: The Need for Total Testing

What many farmers probably don’t know about soil testing is that most soil tests only tell us what is soluble in the soil. They do not tell us what is actually there in the soil, no matter what fertilizer salesmen might like to imply. To find out what is actually there requires a total acid digest similar to what is used for plant tissue analysis. Mining labs run these total acid di­gests on ore samples which are crushed, ground and extracted with concentrated nitric and hydrochloric acid solutions, but a mining assay does not determine total carbon, nitrogen and sulfur as a plant tissue analysis would. These ele­ments need a separate procedure essen­tial for evaluating soil humic reserves.

Total soil testing is key to understanding your soils’ needs.

Most soil tests measure total carbon, which then is multiplied by 1.72 to calcu­late soil organic matter. This assumes that most of the carbon in the soil is humus of one form or another. While this may or may not be true, determining the car­bon to nitrogen, nitrogen to sulfur, and nitrogen to phosphorus ratios is a good guide for evaluating organic matter, and this requires testing total nitrogen, sulfur and phosphorus as well as carbon.

While carbon in almost any form is a benefit to the soil, it helps enormously if it is accompanied by the right ratios of ni­trogen, sulfur and phosphorus. Though these ratios are not set in stone, a target for carbon to nitrogen is 10:1, for nitro­gen to sulfur is 5.5:1 and for nitrogen to phosphorus is 4:1. This works out to an ideal carbon to sulfur ratio of 55:1, and a carbon to phosphorus ratio of 40:1. Because soil biology is very adjustable these targets are not exact, but achieving them in soil total tests is a good indica­tion of humus reserves that will supply the required amounts of amino acids, sulfates and phosphates whenever the soil food web draws on them. Continue Reading →

Liquid Organic Matter Can Save Costs, Increase Yields

Plants, when delivered liquid organic matter, have been proven to use less and make a higher yield.

Organic matter improves tilling properties and increases soil water holding capacity in soil. It also makes nutrients in soil more readily available to plants as they leach through soil at minimum rates. Most importantly, due to their unique chemical and physical compositions, organic matter-bound nutrients have been proven to be very efficiently utilized by plants. Organic matter is no doubt one of the most important key ingredients to increase soil productivity, which ultimately results in higher crop yields.

However, there are many types of organic matter with different methods of application, in which practicability and efficiency can be a concern. Canadian Humalite International Inc. of Edmonton, Alberta, Canada, has been making an effort to mitigate this challenge by utilizing low-quality coal (non-hazardous material, energy value around 7,000 BTU/lb) as a source of organic matter. This material is transported from the mine, crushed, liquefied, combined with nutrients, and then applied to soil and/or plants. Rather than using it as a non-efficient source of energy, this coal material is developed into products which are beneficial to soil.

The products are applied to soil/seeds, seedlings, and plants up to 15 percent flowering through drip irrigation and pivot/spray systems. Significant yield increases have been observed on various crops grown in different types of soil and climate regions in Canada and the United States. The following example is one of the most recent findings obtained from a field trial completed in Forrestburg, Alberta, Canada, in 2013. Continue Reading →

Cover Crops on the Farm

Cover crops are increasingly being used by farmers across the country to suppress weeds, conserve soil, protect water quality and control pests and diseases.

cover crops on the farm

A mix of rye, clover and vetch. Farmers have steadily increased their use of cover crops over the past five years.

The fourth annual SARE/CTIC Cover Crop Survey collected data from more than 2,000 growers from 48 states and the District of Columbia. The survey provides insight into cover crop usage and benefits and explores what motivates farmers to include cover crops in their farm management and soil health plans.

Respondents reported a steady increase in the number of acres they have cover cropped over the past five years. They said the most important benefits of cover crops include improved soil health, reduced erosion and compaction, and increased soil organic matter. Other reported key benefits of using covers are weed and insect control, nitrogen fixation, attracting pollinators and providing deep taproots.

North Central SARE (Sustainable Agriculture Research and Education) and CTIC (Conservation Technology Information Center) sought data on how farmers use cover crops to manage their fertilizer inputs. Growers were asked to indicate their level of agreement with a series of fertilizer-related statements using a scale ranging from 1 (strongly agree) to 5 (strongly disagree). The statement that got the highest level of agreement was “Using cover crops has enabled me to reduce application of nitrogen on my cash crop,” with 134 of 1,012 respondents strongly agreeing and 244 checking “agree.” The statement that had the highest level of disagreement was “Using cover crops has required me to use additional crop fertility inputs over time to meet the needs of my cash crop.”

Continue Reading →

Pollinators in Peril

Pollinators have a staunch ally in Graham White. White, a small-scale hobby beekeeper in Scotland, has been an international campaigner on the dangers of neonicotinoid pesticides since 2003. To this endeavor, he brings his background in environmental education and teaching, a fascination with the biodiversity of life, and his long-term involvement in environmental issues.

Graham White, protector of pollinators

Graham White, a small-scale hobby beekeeper in Scotland, has been an international campaigner on the dangers of neonicotinoid pesticides and their affect on pollinators since 2003.

Born into a family of coal miners and glassmakers in an industrial town near Liverpool, England, White developed his love of nature exploring remnant woodlands and abandoned 19th century canals. As a teenager he was introduced to hiking, and as a university student in the late 1960s he became an avid rock climber. He credits his 1976 expedition, hiking the John Muir Trail from Yosemite to Mt. Whitney in California, with changing his life.

When White returned to the UK, he decided to make it his mission to introduce John Muir’s writings and environmental values to the people of Britain. Muir, who founded the Sierra Club in 1892, was from Scotland, but was virtually unknown there. White founded the UK’s first Environment Centre in Edinburgh in 1978 and served as founding director for 23 years. In 1994 he proposed the creation of The John Muir Award for environmental excellence as a personal development program for people of all ages. In recent years over 200,000 people have completed this national challenge award.

White is also an accomplished nature photographer, an author and editor of environmentally themed books and articles, and a radio broadcaster. His radio productions include the BBC interview series Deep in Conservation with environmental luminaries such as David Brower, Satish Kumar, Vandana Shiva, Wangari Maathai, Amory Lovins, and Bill Mollison. Continue Reading →

Interview: Author Judith Schwartz Examines Water Management

Interviewed by Tracy Frisch

Judith Schwartz - modern water wisdomWhen writer Judith Schwartz learned that soil carbon is a buffer for climate change, her focus as a journalist took a major turn. She was covering the Slow Money National Gathering in 2010 when Gardener’s Supply founder Will Raap stated that over time more CO2 has gone into the atmosphere from the soil than has been released from burning fossil fuels. She says her first reaction was “Why don’t I know this?” Then she thought, “If this is true, can carbon be brought back to the soil?” In the quest that followed, she made the acquaintance of luminaries like Allan Savory, Christine Jones and Gabe Brown and traveled to several continents to see the new soil carbon paradigm in action. Schwartz has the gift of making difficult concepts accessible and appealing to lay readers, and that’s exactly what she does in Cows Save the Planet And Other Improbable Ways of Restoring Soil to Heal the Earth, which Elizabeth Kolbert called “a surprising, informative, and ultimately hopeful book.”

For her most recent project, Water in Plain Sight: Hope for a Thirsty World, Schwartz delves into the little-known role the water cycle plays in planetary health, which she illustrates with vivid, empowering stories from around the world. While we might not be able to change the rate of precipitation, as land managers we can directly affect the speed that water flows off our land and the amount of water that the soil is able to absorb. Trees and other vegetation are more than passive bystanders at the mercy of temperature extremes — they can also be powerful influences in regulating the climate.  

The week after this interview was recorded, Schwartz travelled to Washington, D.C., to take part in a congressional briefing on soil health and climate change organized by Regeneration International. As a public speaker, educator, researcher, and networker, she has become deeply engaged in the broad movement to build soil carbon and restore ecosystems.

A Healthy Water Cycle

ACRES U.S.A. Please explain the title of your book, Water in Plain Sight.

JUDITH D. SCHWARTZ. The title plays on the idea that there is water in plain sight if we know where to look. It calls attention to aspects of water that are right before us but we are not seeing. By this I mean how water behaves on a basic level, not anything esoteric.

ACRES U.S.A. How should we reframe the problems of water shortages, runoff, and floods?

SCHWARTZ. Once we approach these problems in terms of how water moves across the landscape and through the atmosphere, our understanding shifts. For example, when we frame a lack of water as “drought,” our focus is on what water is or isn’t coming down from the sky. That leaves us helpless because there’s really not much we can do. But if we shift our frame from drought to aridification, then the challenge becomes keeping water in the landscape. That opens up opportunities. Continue Reading →

High-Quality, High-Yielding Crops: Measure to Manage

High-quality, high-yielding crops are the goal for most farmers. But where do you begin? Some even insist that to have both is simply impossible to accomplish. For those who think that way, it will likely always be true. But for those who are looking for ways to improve and believe there is still room to do so, what should be considered first? And then where do you go from that point to make the most possible difference?

The soil’s physical structure can be measured and needed corrections determined by use of a detailed soil analysis.

To get high-quality, high-yielding crops, begin with the soil where they will be growing by performing the closest examination of all the most important factors needed to meet every possible requirement. What provides the most advantage to the crop from that soil? Some will feel the answer here is a heavy fertilizer program for the crop. Sufficient fertilizer is extremely important, but to achieve high-quality, high-yielding crops, there is another requirement that is also essential to assure the greatest value from whatever fertilizer is applied.

For each soil to perform at its best requires a balance of water, air, minerals and organic matter. Specifically, if you want the soil to do its best it should contain a balance of 50 percent solids (ideally 45 percent minerals and 5 percent humus) and 50 percent pore space (composed of 50 percent water and 50 percent air). This is the correct physical composition of extremely productive, high-performance soils. To be consistently efficient it is a necessary requirement to develop the most effective biologically active environment to build the needed extensively developed root systems of high-quality, high-yielding crops.

Continue Reading →