AcresUSA.com links

Archive | Soil Life

Pollinators in Peril

Pollinators have a staunch ally in Graham White. White, a small-scale hobby beekeeper in Scotland, has been an international campaigner on the dangers of neonicotinoid pesticides since 2003. To this endeavor, he brings his background in environmental education and teaching, a fascination with the biodiversity of life and his long-term involvement in environmental issues.

Graham White, a small-scale hobby beekeeper in Scotland, has been an international campaigner on the dangers of neonicotinoid pesticides and their affect on pollinators since 2003.

Born into a family of coal miners and glassmakers in an industrial town near Liverpool, England, White developed his love of nature exploring remnant woodlands and abandoned 19th century canals. As a teenager he was introduced to hiking and as a university student in the late 1960s he became an avid rock climber. He credits his 1976 expedition, hiking the John Muir Trail from Yosemite to Mt. Whitney in California, with changing his life.
When White returned to the UK, he decided to make it his mission to introduce John Muir, his writings and environmental values to the people of Britain. Muir, who founded the Sierra Club in 1892, was from Scotland, but was virtually unknown there. White founded the UK’s first Environment Centre in Edinburgh in 1978 and served as founding director for 23 years. In 1994 he proposed the creation of The John Muir Award for environmental excellence as a personal development program for people of all ages. In recent years over 200,000 people have completed this national challenge award.
White is also an accomplished nature photographer, author and editor of environmentally themed books and articles, and radio broadcaster, whose productions include the BBC interview series Deep in Conservation with environmental luminaries such as David Brower, Satish Kumar, Vandana Shiva, Wangari Maathai, Amory Lovins, and Bill Mollison.

Interviewed by Tracy Frisch

ACRES U.S.A. How did you come to be a campaigner for bees?

GRAHAM WHITE. I started keeping bees in 1994, with four hives; within two years I had 10 hives. I harvested about 20 pounds of honey per hive each year, to share with friends and family. I only became a bee campaigner around 2000, when my bees began to die for no apparent reason. The Varroa mite arrived in 1998, but we treated for it, and I didn’t lose any colonies. The French have had Varroa mites since 1963 without any impact on honey production. In 2001, I moved to the Scottish Borders, an area where wheat, canola, barley and potatoes are intensively farmed. I soon noticed something odd happening with the bees; my colonies didn’t die, but they no longer thrived or made as much honey. They seemed weaker and lacking in vigor. In 1998 Bayer’s imidacloprid appeared in the UK. I wasn’t living among the wheat fields back then, so I wasn’t aware of it. When clothianidin appeared, around 2003, people began to lose bees on a large scale — 50 to 80 percent of hives died each winter. After some online research, I discovered that mass bee deaths had occurred in France since 1994. We were just the next in a line. I began to educate myself and try to alert my fellow beekeepers in the UK. Continue Reading →

Soil Organic Matter: Tips for Responsible Nitrogen Management

For soil organic matter to work the way it should, it depends on a careful balance of nutrients and minerals, including one of

Healthy, homegrown carrots in rich soil.

the most important elements — nitrogen. One of the great paradoxes of farming is that lack of nitrogen is regarded as one of the great limitations on plant growth, and yet plants are bathed in it because the atmosphere is 78 percent nitrogen.

Most plants cannot use nitrogen in this form (N2) as it is regarded as inert. It has to be converted into other forms — nitrate, ammonia, ammonium and amino acids for plants to utilize it.

In conventional agriculture most of these plant-available forms of nitrogen are obtained through synthetic nitrogen fertilizers that have been produced by the Haber-Bosch process.

Continue Reading →

Healthy Soil, Defined

What is healthy soil? Most farmers strive for a healthy, fer­tile soil that has good tilth. But do these terms — soil health, soil fertility and good tilth — all mean the same thing to all of us? I bet you have an image in your mind of what the soil and the crop grow­ing in it should look like. But in today’s

A worm comes up from the earth.

world, with all the available technology, plant protective fungicides, insecticides, etc. along with plenty of soluble nutri­ents, looking at a “good” crop can be deceiving. It may in fact be wearing a lot of ‘make-up,’ covering up its true state of health. In recent years, the USDA Natural Resources Conservation Service (NRCS) has started to focus more on soil health and what constitutes a “healthy” soil.

If we define soil health using the NRCS’ definition, it is “the capacity to function.” I thought about this definition for quite some time and decided I need­ed to add to it, clarifying the thought as “the capacity to function without inter­vention.” I define intervention as plant alterations, fungicides, insecticides, etc. Healthy soil should produce healthy crops without intervention.

Continue Reading →

Rhodium: The Mystery Nutrient Revealed

Rhodium is not a common term used among farmers and health professionals. But the mineral nutrient does matter.

Rhodium

Rhodium’s molecular formula.

Trace nutrients tend to become submerged once the so-called roster of essentials is exhausted. They do not count, if standard books on the subject are to be taken seriously. Yet peer-reviewed research says something else. Unfortunately, it takes research between 40 and 50 years to make it into the clinic.

For this reason and for reasons to be explained, you won’t encounter the mineral rhodium in the vocabulary of most health maintenance providers or nutritionists who hope to cope with metabolic mischief. It is rare, this element called rhodium — number 45 on the Periodic Table of Elements, number 56 on the Olree Standard Genetic Periodic Chart.

Continue Reading →

Mole Control: DIY Trap Construction

Mole control methods range the gamut from simple and non-toxic to chemical-based and complex. My simple mole trap was founded on the basis of field trials and personal convictions I hold regarding the environment and its inhabitants. Prior research had been done early on in the search for a humane and sustainable method for dealing with the mole problem here at Highland Hill Farm.

This trap is made from a common five-gallon bucket with about 70 quarter-inch holes
drilled through the bottom.

Highland Hill Farm is a 22-acre parcel located in the steep, rocky foothills of Mt. Sunapee. Agriculturally speaking, this area of New Hampshire is better suited for grazing pasture and forestry than for large-scale horticulture. A milestone in sustainability and independence here on the farm has been reached with the addition of a fully functioning, off-grid solar powered electrical system. Photovoltaic solar panels supply clean renewable power to maintain three farmstead dwellings as well as the two large chest freezers used to keep the summer produce fresh. This system was designed, constructed and fully funded by myself as a personal goal to act responsibly in support of the convictions I maintain toward environmental stewardship.

This article was written on a computer powered by the sun. I developed and experimented with various types of mole traps. The soil of my growing beds is rich and teeming with life, especially earthworms, the favorite food of the common northern mole (Talpa europaea ). Over the years I’ve been using a thick layer of mulch hay between the rows and around the spring plantings. This layer of hay provides cover for the moles, and as it decomposes it provides food for the earthworms. Plenty of worms create an environment conducive to plenty of moles. It’s not uncommon for me to step on a mole tunnel every third or fourth step, even around the grassy area near the trout pond. The infestation had gotten to the point where action had to be taken.

Continue Reading →

Microelements with Horticultural and Livestock Applications

Microelements: We know they exist, but how can they help a farmer generate larger yields in an ecological way?

All the numerous trace elements found inside the Earth’s crust and in seawater are considered to contribute to

Boron deficiency symptoms in sectioned carrot roots.

nutritional homeostasis in plants and animals. However, only a select few, relatively speaking, have been researched adequately and can demonstrate to horticulturalist, agronomist or animal nutritionist the cost-to-benefit return as it relates to production and vigor of the chosen crop or livestock needing supplementation.

I will feature some of these special nutrients in this article while also encouraging those concerned with supplementing minerals either to soils or livestock rations to take into consideration the significance of the untold number of other elements found in naturally occurring mineral deposits that are mined, found in ocean water, seaweeds, fish emulsions, volcanic deposits, humic ores, wood ashes and such.

So, to start the ball rolling, I’ll begin by including those minerals having both a horticultural and livestock application. 

Continue Reading →