AcresUSA.com links

Archive | Soils

Natural Lawn Care

green grass growing

Lawn management practices makes a huge impact on the health of each lawn as well as the environment.

In terms of acreage devoted to pro­duction, grass in the United States cov­ers more than 40 million acres — as much as corn, wheat, soybeans and the next five top irrigated crops com­bined. Although in most cases, it has only aesthetic value, every year Americans devote much of their leisure time and discretionary in­come to the maintenance of their lawns.

A variety of management prac­tices collectively make a huge impact not only on the health of each lawn but on the environment in general. Armed with a bit of knowledge, the homeowner can adjust his or her cultural practices in such a way as to decrease time and expense given to raising grass and become more eco-friendly at the same time.

Continue Reading →

Compost & The Promise of Microbes

Scientist David C. Johnson Explores Microbial Communities, Carbon Sequestration and Compost

David C. Johnson’s experimental findings and openness to new insights have turned him into a champion of microbial diversity as the key to regenerating soil carbon — and thus to boosting agricultural productivity and removing excess atmospheric CO2. His research, begun only a decade ago, affirms the promise of microbes for healing the planet. It has attracted interest from around the world.

Johnson didn’t come to science until later in life. At age 51 he left a rewarding career as a builder, specializing in custom homes for artists, to complete his undergraduate degree. He planned to use his education “to do something different for the other half of [his] life,” though what he didn’t know. He said a path opened up and opportunities kept coming his way. After completing his undergraduate degree, Johnson kept going, earning his Masters in 2004 and Ph.D. in 2011, both in Molecular Microbiology. With his first advanced degree in hand, he got a job at New Mexico State University, where he was going to school and currently has an appointment in the College of Engineering.

He credits a fellowship program that placed undergraduate students in different labs with sparking his fascination with the composition of microbial communities as a graduate student. Johnson, who once farmed as a homesteader in Alaska, says he was once “an NPK junkie” but considers himself to be “13-years reformed.” Continue Reading →

Windbreak Benefits on the Farm

Windbreak benefits extend beyond reducing wind erosion. Research reveals windbreaks can also be customized to meet your farm management goals, whether it’s increasing wildlife habitat or benefiting visiting pollinators.

Windbreak benefits extend beyond controlling wind to include soil moisture retention and additional wildlife habitat options.

A “national menace” is what Congress called wind erosion during the Dust Bowl. This menace caused an estimated loss of 850,000,000 tons of topsoil and spurred President Roosevelt’s large-scale Shelterbelt Project of planting tree windbreaks across the Great Plains to reduce future wind erosion.

Research shows that reducing wind erosion isn’t the only benefit provided by these windbreaks, and they can be customized to meet your farm’s management goals, whether it’s increasing wildlife habitat or benefiting visiting pollinators.

In a field adjacent to a windbreak, there is an area where a crop yield of 110 percent isn’t uncommon; it’s the area which Charles Barden, professor of forestry with Kansas State University and principal investigator of the Great Plains Crop Yield Study, dubs the “sweet spot in the field.” In this sweet spot, usually found in an area about two times the height of the trees and extending out 12-15 times the height of the windbreak trees, research has found an increase in yield of 23 percent for winter wheat, 15 percent for soybeans and 12 percent for corn.

Continue Reading →

The Best Worm-Friendly Worm Bin for Composting

Worms harvested from a DIY worm bin

Continuous-flow worm bins makes harvesting easy on you and the worms.

Composting with worms produces a consistently superior product called vermicompost, which contains high counts of beneficial soil micro-organisms. Harvesting the finished vermicompost from most worm bins presents a problem, though: one either stops feeding a significant part of the bin to take it out of production, encouraging the worms to vacate the area to be harvested, or the worms have to be physically separated from the finished compost.

The Continuous-Flow Worm Bin

Continuous-flow worm bins are designed to provide a continuous output of finished vermicompost without disturbing the worms or taking any part of the bin out of production. This design makes it much easier to harvest the finished compost. Most continuous-flow designs have a winch-powered knife that cuts a slice of finished compost from the bottom of the bin about 2’ above the ground.

Hügelkultur Gardening

Hügelkultur (pronounced “hoogle-culture”) is German for “hill culture.” Hügelkultur entails growing crops on a raised, earthen mound that consists of a foundation of fresh or rotting logs and branches covered in layers of manure, compostable materials and soil.

Hügelkultur (pronounced "hoogle-culture") is German for "hill culture."

Planting potatoes in a hügel bed.

Hügelkultur (pronounced “hoogle-culture”) is German for “hill culture.” Hügelkultur entails growing crops on a raised, earthen mound that consists of a foundation of fresh or rotting logs and branches covered in layers of manure, compostable materials and soil.

Hügelkultur Construction

  • Hügel beds can be made to any length, width or height desired. The average hügelkultur bed is three to five feet tall and can be rectangular, square, round or horseshoe-shaped (keyhole).
  • Beds are typically built on top of the ground and sometimes in 12- to 15-inch deep trenches.
  • Beds are generally free-standing, without any physical support or enclosure, but can be framed at the base with blocks, untreated lumber, logs or hay bales as desired.
  • A mixture of soft (faster-rotting) and hard (longer-lasting) woody base materials usually includes freshly dead or rotting firewood rounds, stumps, branches, brush and twigs.
  • Avoid wood from allelopathic trees like black walnut (for its juglone toxicity); high-resin trees like pine, spruce, yew, juniper and cedar; and hard, rot-resistant woods such as black locust, Osage orange and redwood. Any type of wood with sprouting potential (such as willow) should be completely dead before using.
  • Small branches, twigs, sawdust and coarse woodchips are used to fill voids in the woody base before construction is complete and periodically as the bed breaks down.
  • A simple hügel is covered with three to five inches of rotted manure or compost, followed by another three to five inches of garden soil or topsoil, but this can also include multiple layers of various organic materials in the fashion of a “lasagna-style” garden bed.
  • Hügel beds are ready for planting immediately after construction.

Continue Reading →

Poisoning Our Children: Pesticide Residues

In December 2014, the United States Department of Agriculture (USDA) sent out a news release to all the media outlets in the country about the results of its 2013 Pesticide Data Program (PDP). The headline: “Report confirms that U.S. food does not pose a safety concern based on pesticide residues.”

Poisoning Our Children by André Leu, on pesticide residues

Because people consume a variety of foods, with around 77 percent containing residues of different types of agricultural chemicals, most people consume a chemical concoction.

The news release contained the following statement from the United States Environmental Protection Agency (EPA): “The newest data from the PDP confirm that pesticide residues in food do not pose a safety concern for Americans. EPA remains committed to a rigorous, science-based, and transparent regulatory program for pesticides that continues to protect people’s health and the environment.” So according to the EPA and the USDA, parents should have no concerns because the pesticides in food are safe.

Hundreds of peer-reviewed scientific papers by scientists and researchers challenge this assertion. So, let’s look at the science to understand why experts have serious concerns about the safety of pesticides.

What Gets Tested?

One of the greatest pesticide myths is that all agricultural poisons are scientifically tested to ensure that they are used safely. According to the United States President’s Cancer Panel (USPCP), this is simply not the case: “Only a few hundred of the more than 80,000 chemicals in use in the United States have been tested for safety.”

The fact is that the overwhelming majority of chemicals used worldwide have not been subjected to testing. Given that, according to the USPCP, the majority of cancers are caused by environmental exposures, especially exposure to chemicals, this oversight shows a serious level of neglect by regulatory authorities. Continue Reading →