Tag Archives | campus composting

The Best Worm-Friendly Worm Bin for Composting

Worms harvested from a DIY worm bin

Continuous-flow worm bins makes harvesting easy on you and the worms.

Composting with worms produces a consistently superior product called vermicompost, which contains high counts of beneficial soil micro-organisms. Harvesting the finished vermicompost from most worm bins presents a problem, though: one either stops feeding a significant part of the bin to take it out of production, encouraging the worms to vacate the area to be harvested, or the worms have to be physically separated from the finished compost.

The Continuous-Flow Worm Bin

Continuous-flow worm bins are designed to provide a continuous output of finished vermicompost without disturbing the worms or taking any part of the bin out of production. This design makes it much easier to harvest the finished compost. Most continuous-flow designs have a winch-powered knife that cuts a slice of finished compost from the bottom of the bin about 2’ above the ground.

Campus Composting

In 2009, with my retirement from Ohio University looming, I didn’t think my personal involvement in the construction and start-up of a class 2 campus composting facility would develop into such a large operation. Class 2 compost (according to the Ohio Environmental Protection Agency) consists of yard, agriculture, animal, or food waste, plus a bulking agent.

To get this project underway, thousands of yards of dirt on the campus’s periphery had to be moved to prepare the site and many yards of concrete were poured to construct the base of a metal pole barn, which would eventually house the composting machine.

Hauled by truck from Ottawa, Canada, the enormous composting machine was unloaded by crane and placed on the concrete pad.

The vertical posts were installed and metal siding attached. For power, electricity was connected and the solar array installed. Today, the Ohio University Composting facility also boasts a solar thermal system and waste oil heaters that use leftover oil from the university’s facilities operations. Skylights provide indirect lighting. The entire facility is self-sustainable. With a 10 kilowatt-per-hour built in 2009 and a 31.1 kilowatt-per-hour system added in 2012, the solar array produces more energy than is used in the operation.

Continue Reading →