AcresUSA.com links

Tag Archives | carbon

Farming the CO2 Factor

In a rare moment in an early Rover reconnaissance mission to Mars, carbon dioxide (CO2) was released from a soil sample during a scientific test and was thought to indicate the presence of microbes. Excitement quickly faded to puzzlement, then dismay, as it was realized that a glitch in the expensive on-board lab had produced inorganic CO2. Chemicals used for the soil extract triggered release of inorganic CO2, perhaps from the ubiquitous magnesite (MgCO3) found in Martian soil.

Will Brinton and Odette Menard (MAPAQ Quebec) speak at an on-farm event in Pennsylvania as part of the No-Till Alliance Field Days,

On Earth, the release of carbon dioxide from moist soil due to microbial activity is so pervasive that it is difficult not to observe it. We don’t have the problem they do on Mars trying to distinguish biological CO2, in an atmosphere containing 96 percent CO2, from non-living sources. In science we call this dilemma “distinguishing small differences between large numbers.” Here on Earth, CO2 in the atmosphere is only 0.04 percent, and climbing just barely perceptibly, making it relatively easy to distinguish biological CO2. Curiously, almost nobody is doing it.

Borrowing From the Past

I learned about soil CO2 respiration working on a graduate program in Sweden investigating fertilizer and crop effects on soil biology. Agronomists in the 1950s set up farm plots and maintained them for decades, enabling later researchers such as myself to observe the long-term effects of differing soil management.

In the process, I discovered a trove of even earlier Swedish work on soil respiration. Continue Reading →

Reversing Climate Change through Regenerative Agriculture

By Andre Leu, International Director of Regeneration International

This year’s Acres U.S.A. Conference features numerous speakers, who can show how we can reverse the disruptive effects climate change by adopting best practice regenerative production systems. These systems will also make our farms and ranches more productive and resilient to the current erratic climate disruption that we are all facing.

Andre Leu international director of Regeneration International

Andre Leu is the international director of Regeneration International

The increasing erratic and disruptive weather events caused by climate change are the greatest immediate threat to viable farming and food security. We are already being adversely affected by the longer and more frequent droughts, and irregular, out-of-season and destructive rainfall events.

The world is already around 1.8 degrees Fahrenheit (1 degree Celsius) warmer than the industrial revolution. The energy needed to heat the atmosphere by 1.8 degrees is equivalent to billions of atomic bombs. I am using this violent metaphor so that people can understand how much energy is being released into our atmosphere and oceans and why we will get more frequent and stronger storms wreaking havoc in our communities.

Continue Reading →

Increasing Soil Organic Matter Through Organic Agriculture

Numerous scientific studies show that soil organic matter provides many benefits for building soil health such as improv­ing the number and biodiversity of beneficial microorganisms that pro­vide nutrients for plants, including fixing nitrogen, as well as controlling soilborne plant diseases. The decom­position of plant and animal residues into SOM can provide all the nutri­ents needed by plants and negate the need for synthetic chemical fertilizers, especially nitrogen fertilizers that are responsible for numerous environ­mental problems.

Organic (above) vs. conventional (below). The higher levels of organic matter allow the soil in the organic field to resist erosion in heavy rain events and capture more water.

The year 2015 was declared the International Year of Soils by the 68th UN General Assembly with the theme “Healthy Soils for a Healthy Life.” I was particularly pleased with the theme because this is a message that we in the organic sector have been spreading for more than 70 years, and at first we were ridiculed. Now there is a huge body of science showing that what we observed in our farming systems is indeed correct.

“Organic farming” became the dominant name in English-speaking countries for farming systems that eschew toxic, synthetic pesticides and fertilizers through J.I. Rodale’s global magazine Organic Farming and Gar­dening, first published in the United States in the 1940s. Rodale promot­ed this term based on building soil health by the recycling of organic matter through composts, green ma­nures, mulches and cover crops to increase the levels of soil organic matter as one of the primary management techniques.

Continue Reading →

Homemade Fertilizers

With the economy and farm finance more and more problematic, interest is growing in running farms with fewer, more accurate, and less expensive inputs and homemade fertilizers can help cut costs and keep fertility on the farm.

homemade fertilizer

Vermiwash made in a small biodynamic apple orchard in the
Himalayan foothills of Uttaranchal in sight of Nanda Devi, India’s second highest
mountain.

Formerly we’ve overdosed with a plethora of harsh fertilizers — especially nitrogen. As a result we’ve burned up the better part of our soil carbon, and this has reduced our rainfall.

By burning off carbon, we have created droughts even as ocean warming has sent more evaporation into the atmosphere. We have ignored that few things have more affinity for hydrogen than carbon, and if we want rain to adhere to and permeate our soils we need to build soil carbon.

We thought salt fertilizers were cheap, and the stunning results encouraged us to wish away any hidden costs, no matter that earthworms disappeared simultaneously with the food chain that supported them. Our soils got hard and sticky as magnesium stayed behind while nitrates leached, carrying away silicon, calcium and trace minerals. The soil fused when wet, shed water when it rained, and we continued to get less for more.

As if this wasn’t enough, the mind-set we were sold was get big or get out. As our net margins dried up and our future prospects evaporated, our water dried up and our land became exhausted. Continue Reading →

Soil Restoration: 5 Core Principles

Soil restoration is the process of improving the structure, microbial life, nutrient density, and overall carbon levels of soil. Many human endeavors – conventional farming chief among them – have depleted the Earth to the extent that nutrient levels in almost every kind of food have fallen by between 10 and 100 percent in the past 70 years. Soil quality can improve dramatically, though, when farmers and gardeners maintain constant ground cover, increase microbe populations, encourage biological diversity, reduce the use of agricultural chemicals, and avoid tillage.

Soil restoration begins with photosynthesis.

Continue Reading →

Carbon Cycling, Carbon Building

In this article I hope to provide some ideas concerning carbon cycling and how to effectively build soil carbonic organic matter. There seem to be three primary means by which we can increase a soil’s carbon content: carbon imports, carbon generation and carbon induction. Each of these possible methods can also offer other strengths to a soil-building program, compost can provide a biological inoculum, humates can provide a biological stimulant.

Adequate levels of functional organic matter and a robust soil digestive system are sorely lacking in most all agricultural soils. This lack of humic substances and biology significantly reduces a soil’s water-holding capacity and the ability to release nutrients, all of which leads to large losses in crop quality and yield.

Meanwhile, increasingly higher levels of atmospheric carbon or CO2 are being produced by the burning of fossil fuels and land desertification. Carbon sequestration — the term has been thrown around like a rubber ball. What does it really mean for agriculture? How can carbon be stabilized in soils most effectively?

Importing Carbon

There are three primary carbon imports: Humates or leonardite, and their derivatives such as fulvic and humic acids. The humic substances present in these materials generally provide very good nutrient exchange. Biochar is also a stable carbon import but not as active as leonardite seems to be. Compost can also be a viable carbon import with the added benefit of a strong biological component. Compost, however, tends to have a lower level of stable humic substances when compared with other materials. A fair proportion of compost can degrade over a period of a few years. Continue Reading →