AcresUSA.com links

Tag Archives | CO2

Reversing Climate Change through Regenerative Agriculture

By Andre Leu, International Director of Regeneration International

This year’s Acres U.S.A. Conference features numerous speakers, who can show how we can reverse the disruptive effects climate change by adopting best practice regenerative production systems. These systems will also make our farms and ranches more productive and resilient to the current erratic climate disruption that we are all facing.

Andre Leu international director of Regeneration International

Andre Leu is the international director of Regeneration International

The increasing erratic and disruptive weather events caused by climate change are the greatest immediate threat to viable farming and food security. We are already being adversely affected by the longer and more frequent droughts, and irregular, out-of-season and destructive rainfall events.

The world is already around 1.8 degrees Fahrenheit (1 degree Celsius) warmer than the industrial revolution. The energy needed to heat the atmosphere by 1.8 degrees is equivalent to billions of atomic bombs. I am using this violent metaphor so that people can understand how much energy is being released into our atmosphere and oceans and why we will get more frequent and stronger storms wreaking havoc in our communities.

Continue Reading →

Increasing Soil Organic Matter Through Organic Agriculture

Numerous scientific studies show that soil organic matter provides many benefits for building soil health such as improv­ing the number and biodiversity of beneficial microorganisms that pro­vide nutrients for plants, including fixing nitrogen, as well as controlling soilborne plant diseases. The decom­position of plant and animal residues into SOM can provide all the nutri­ents needed by plants and negate the need for synthetic chemical fertilizers, especially nitrogen fertilizers that are responsible for numerous environ­mental problems.

Organic (above) vs. conventional (right). The higher levels of organic matter allow the soil in the organic field to resist erosion in heavy rain events and capture more water.

The year 2015 was declared the International Year of Soils by the 68th UN General Assembly with the theme “Healthy Soils for a Healthy Life.” I was particularly pleased with the theme because this is a message that we in the organic sector have been spreading for more than 70 years, and at first we were ridiculed. Now there is a huge body of science showing that what we observed in our farming systems is indeed correct.

“Organic farming” became the dominant name in English-speaking countries for farming systems that eschew toxic, synthetic pesticides and fertilizers through J.I. Rodale’s global magazine Organic Farming and Gar­dening, first published in the United States in the 1940s. Rodale promot­ed this term based on building soil health by the recycling of organic matter through composts, green ma­nures, mulches and cover crops to increase the levels of soil organic matter as one of the primary management techniques.

Continue Reading →

Crop Nutrients Fall as CO2 Rises

greenhouse-growingAt the elevated levels of atmospheric CO2 anticipated by around 2050, crops that provide a large share of the global population with most of their dietary zinc and iron will have significantly reduced concentrations of those nutrients, according to a new study led by the Harvard School of Public Health published in Nature. Given that an estimated 2 billion people suffer from zinc and iron deficiencies, the reduction in these nutrients represents the most significant health threat ever shown to be associated with climate change.

Some previous studies of crops grown in greenhouses and chambers at elevated levels of CO2 revealed nutrient reductions, but those studies were criticized for using artificial growing conditions. Experiments using free air carbon dioxide enrichment (FACE) technology became the gold standard as FACE allows plants to be grown in open fields at elevated levels of CO2, but those prior studies had small sample sizes and have been inconclusive.

Researchers analyzed data involving 41 cultivars (genotypes) of grains and legumes from the C3 and C4 functional groups (plants that use C3 and C4 carbon fixation) from seven different FACE locations in Japan, Australia and the United States. The level of CO2 across all seven sites was in the range of 546-586 parts per million (ppm). They tested the nutrient concentrations of the edible portions of wheat and rice (C3 grains), maize and sorghum (C4 grains) and soybeans and field peas (C3 legumes).

The results showed a significant decrease in the concentrations of zinc, iron and protein in C3 grains. For example, zinc, iron and protein concentrations in wheat grains grown at the FACE sites were reduced by 9.3 percent, 5.1 percent and 6.3 percent respectively, compared with wheat grown at ambient CO2. Zinc and iron were also significantly reduced in legumes; protein was not.

This article appears in the July 2014 issue of Acres U.S.A.