AcresUSA.com links

Tag Archives | soil life

Sustainable Soil: Four Rules for Controlling Organic Inputs

Sustainable soil requires profitability.

A girl plays in the soil.

No matter how desirable a sustainable program might be, it must be tempered by the realities of making a total commercial agriculture program work economically. Growers attempting to deal with this reality often focus on sustainability in a piecemeal manner, as they do not always understand the basic rules or guidelines that are required of a sustainable soil program. In this article, we will review the guidelines on achieving sustainability and also report on new developments in sustainable soil nutrition products.

Commercial agriculture programs are often unable to profitably approach sustainability due to economic pressures. Time-honored practices that require land to lay fallow and the use of cover crops along with manure or compost applications are expensive when compared to the rapid prepare-fertilize-plant harvest cycle that has come to dominate commercial practice. Sustainability struggles within such a marketplace, as growers rarely receive a premium for crops grown on sustainable soil versus crops grown conventionally. When a grower is faced with the hard choice of feeding his soil or feeding his family, the family will win.

Continue Reading →

How to Reduce Transplant Shock on Your Farm

Monday-Motivation-Photo_4-24-2017

Avoiding transplant shock: An open show transplanter in use as the crew sets out cabbage in the field.

Avoiding transplant shock when transplanting starters from the greenhouse to the field is a key sustainable farming method.

The time of year has once again arrived when we will be taking plants out of the greenhouse and transplanting them into the field. This can be one of the most stressful experiences plants undergo as they are taken from the warm and sheltered environment of the greenhouse and placed into a field where they are at the mercy of the elements. Plants will almost always incur some amount of damage to their roots as well as their leaves during this process. All of these various stresses are grouped under the general name of “transplant shock.” If plants undergo too much transplant shock, it can leave them open to disease, pest pressure, and lower yield potential. But what can we do to help our plants through this period of increased stress?

Continue Reading →

Healing Clay: How to Harness the Power of Clay to Heal Your Horses and Pastures

For centuries, clay has been used to heal both livestock and pastures.

One of my horses, an 8-yeaphoto1r-old mare, came in from the pasture walking with a distinct limp. I found that she had a horizontal cut (3/8 of an inch deep by 1¾ inches long) on the fleshy back of her left foreleg’s pastern, just above the bulbs of the heel. An equine veterinarian inspected the wound and advised me that healing would be slow due to the wound site’s new tissue being flexed with each step. He also assured me that after healing, the previously able animal would always be lame from scar tissue forming too close to a tendon.

Swelling soon occurred on the leg from the wound up to the knee joint. Periodically, I support-wrapped the leg from fetlock (joint just above pastern) up to the knee with elastic banding cloth. The cut began to heal with applications of a comfrey gel, but after a week the new tissue cracked open because of November’s change to colder, drier air. Healing stopped. Later, I realized that applications of a moisturizing salve had been needed.

Continue Reading →

Humus: What is it and How is it Formed?

Secrets of Fertile Soils

Humus forms as a result of the complicated interplay of inorganic conversions and the life processes of the microbes and tiny creatures living in the soil — the soil ecosystem. Earthworms play a particularly important role in this process. Humus formation is carried out in two steps. First, the organic substance and the soil minerals disintegrate. Next, totally new combinations of these break down products develop, which leads to the initial stages of humus. Humus formation is a biological process. Only 4-12 inches (10-30 centimeters) of humus-containing soil are available in the upper earth crust. This thin earth layer is all that exists to provide nutrition to all human life. The destiny of mankind depends on these 12 inches!

Cultivated soils with 2 percent humus content are today considered high-quality farmland. What makes up the remaining 98 percent? Depending on the soil type, soil organisms constitute about 8 percent, the remains of plants and animals about 5 percent, and air and water around 15 percent.

The remaining 70 percent of soil mass is thus of purely mineral origin. The mineral part of the soil results from decomposition and the erosion of rock. The dissolution of these components is carried out by the lithobionts, which can be seen as the mediators between stone and life. It was Raoul H. Francé who coined the term “lithobiont,” which means “those who live on stone.” The lithobionts are the group of microbes that begin the formation of humus. They produce a life-giving substance from the nonliving mineral. On the basis of this process, living matter, earth, plants, animals and human beings can begin, step by step, to build.

Only soils with an optimal structural state of tilth have a humus content of 8-10 percent. Untouched soils in primeval forests can, at best, reach 20 percent. A tropical jungle can’t use up all its organic waste, so humus can be stored. All forests accumulate humus, but real humus stores only emerge over the course of millennia. Once upon a time accumulations of humus known as chernozem (Russian for black earth) could be found in the Ukraine.

Continue Reading →

Soil Ecosystems: Maintaining Critical Microbial Life

earthworm soil life.tifSoil ecosystems aren’t always the first things people notice when they are in nature.

When asked to describe a forest or a meadow, most people would probably begin with the plants, the species diversity or the color of the foliage. They probably wouldn’t pay much attention to the soil ecosystems and the critical microbial life. But a new Yale-led study shows the importance of earthworms, beetles and other tiny creatures to the structure of grasslands and the valuable soil ecosystem services they provide.

During a 3-year study, researchers found that removing these small animals from the soil of a replicated Scottish sheep meadow altered the plant species that grew in the ecosystem, reduced overall productivity and produced plants that were less responsive to common agricultural management, such as fertilization.

The results reflect the long-term ecological impacts of land use changes, such as the conversion of forests to agricultural land, researchers say.

“We know these soil animals are important controls on processes which cause nutrients and carbon to cycle in ecosystems, but there was little evidence that human-induced loss of these animals has effects at the level of the whole ecosystem on services such as agricultural yield,” said Mark Bradford, lead author of the study published in the Proceedings of the National Academy of Sciences.

This article appears in the December 2014 issue of Acres U.S.A.

Soil Ecosystems: Nutrient Additions

New research from Iowa State University shows that agricultural inputs such as nitrogen and phosphorus alter soil microbial communities and soil ecosystems. Adding nitrogen and phosphorus fertilizers, commonly used as fertilizers, to the soil shifts the natural communities of fungi, bacteria and microscopic organisms called archaea that live in the soil, said Kirsten Hofmockel, associate professor.

Hofmockel and other scientists associated with the Nutrient Network, a global group of scientists, revealed that microbial community responses to fertilizer inputs were globally consistent and reflected plan responses to the inputs. Many soil microbes perform helpful functions in the native ecosystems and altering those microbial communities may have negative environmental consequences, Hofmockel said. The researchers found nutrient additions favored fast-growing bacteria and decreased the abundance of fungi that share a symbiotic relationships with grassland plants.

This encapsulation of the research is from the December 2015 issue of Acres U.S.A.

Soil Ecosystems: Synthetic Nitrogen Lingers for Decades

Nitrogen fertilizer applied to crops lingers in the soil ecosystems and leaks out as nitrate for decades towards groundwater — “much longer than previously thought,” scientists in France and at the University of Calgary say in a new study.

Thirty years after synthetic nitrogen (N) fertilizer had been applied to crops in 1982, about 15 percent of the fertilizer N still remained in soil organic matter, the scientists found.

After three decades, approximately 10 percent of the fertilizer N had seeped through the soil ecosystem toward the groundwater and will continue to leak in low amounts for at least another 50 years.

The findings show that losses of fertilizer N toward the groundwater occur at low rates but over many decades, says Bernhard Mayer, U of C professor of geochemistry and head of the Applied Geochemistry Group.

That means it could take longer than previously thought to reduce nitrate contamination in groundwater, including in aquifers that supply drinking water in North America and elsewhere, he says.

“There’s a lot of fertilizer nitrogen that has accumulated in agricultural soils over the last few decades which will continue to leak as nitrate towards groundwater,” Mayer says.

Canada and the United States regulate the amount of nitrate allowed in drinking water. In the 1980s, surveys by the U.S. Environmental Protection Agency and the U.S. Geological Survey showed that nitrate contamination had probably impacted more public and domestic water supply wells in the United States than any other contaminant.

The study, “Long-term fate of nitrate fertilizer in agricultural soils,” was published in the Proceedings of the National Academy of Sciences.

This summary appears in the December 2013 issue of Acres U.S.A.