AcresUSA.com links

Tag Archives | soils

True Soil Health: Create the Capacity to Function Without Intervention

My philosophy is that whatever you do on your farm should improve soil health. But how do you know what that is? The USDA defines soil health as, “The continued capacity of soil to function as a vital living ecosystem that sustains plants, animals and humans.” I would add to that definition and say that soil health isn’t just the capacity to function, it’s the capacity of soils to function without intervention.

The same field pictured below, three months later. This is the result of managing the field to promote healthy soil life and maximize biological nutrient cycling: a beautiful organic seed corn crop, just after detasseling.

What counts as “intervention?” Does intervention mean biotechnology, insecticides, fungicides and tillage? Is fertilizer an intervention? Do these interventions make your farm better for future years? I believe money spent on interventions needs to be shifted to inputs that yield soil health.

Appropriate intervention when absolutely needed is wise, but the goal is minimum intervention — in other words do everything you can to get the soils healthy and mineralized. Mineralize your soils using exchangeable nutrient sources that come from the carbon biological system. You have to create an ideal home for soil life and feed them in order to build soil health.

Remove the negatives, which include monoculture crops and excessive tillage. Reduce the use of other possible negatives added through harsh soluble fertilizers and excessive nitrogen, not to mention chemicals and biotechnology.

Farming for soil health means treating your farm like a system. For years we have been promoting the “rules” of biological farming (Six Principles of Biological Farming). Following these rules will lead to healthy soils that produce good yields. The soil health guidelines you now see published in many places focus on minimum disturbance with an emphasis on no-till. In my opinion not all soils are capable of being farmed no-till. Continue Reading →

Farming the CO2 Factor

In a rare moment in an early Rover reconnaissance mission to Mars, carbon dioxide (CO2) was released from a soil sample during a scientific test and was thought to indicate the presence of microbes. Excitement quickly faded to puzzlement, then dismay, as it was realized that a glitch in the expensive on-board lab had produced inorganic CO2. Chemicals used for the soil extract triggered release of inorganic CO2, perhaps from the ubiquitous magnesite (MgCO3) found in Martian soil.

Will Brinton and Odette Menard (MAPAQ Quebec) speak at an on-farm event in Pennsylvania as part of the No-Till Alliance Field Days,

On Earth, the release of carbon dioxide from moist soil due to microbial activity is so pervasive that it is difficult not to observe it. We don’t have the problem they do on Mars trying to distinguish biological CO2, in an atmosphere containing 96 percent CO2, from non-living sources. In science we call this dilemma “distinguishing small differences between large numbers.” Here on Earth, CO2 in the atmosphere is only 0.04 percent, and climbing just barely perceptibly, making it relatively easy to distinguish biological CO2. Curiously, almost nobody is doing it.

Borrowing From the Past

I learned about soil CO2 respiration working on a graduate program in Sweden investigating fertilizer and crop effects on soil biology. Agronomists in the 1950s set up farm plots and maintained them for decades, enabling later researchers such as myself to observe the long-term effects of differing soil management.

In the process, I discovered a trove of even earlier Swedish work on soil respiration. Continue Reading →

Book of the Week: Weeds — Control without Poisons by Charles Walters

Editor’s Note: This is an excerpt from Acres U.S.A. original book, Weeds — Control without Poisons, written by Acres U.S.A. founder Charles Walters. Copyright 1999. #4005. Softcover. 352 pages. $25.00 regularly priced.

By Charles Walters

Andre Voisin, the great French farmer and scientist who wrote Soil, Grass and Cancer and Grass Productivity, once declared that most of what he knew came not from the university, but from observing his cows at grass. And so it is with much of what we know about weeds. Walking the fields with the late C.J. Fenzau in areas as separate as Indiana, Iowa and Idaho, I was able to take note of what weeds were trying to tell us during the early days of the Acres U.S.A. publication. Admittedly, this knowledge has been fleshed out since then. And recent findings build on, rather than tear down, those field observations.

Weeds – Control without Poisons

Weeds are an index of what is wrong — and sometimes what is right — with the soil, or at least with the fertility program. In every field on every farm, there are different soil types, and each has a potential for producing certain weeds, depending on how a farmer works the soil. Fall tillage, spring tillage, tillage early or late, if it takes place when the soil is dry or wet, all these things determine the kinds of weeds that will grow that season. As far back as the Dust Bowl days, it became transparently obvious to my Dad — after viewing rainbelt territory near Conway, Missouri — that dryland weeds generally don’t grow in territory that has rain pelting the soil with a steady squall. Thus the pres­ence of salt grass, iron weed, tumbleweed and all the wild sages in soils where flocculation is gone, and wind wafts dust skyward. There are soil conditions that almost always have restricted amounts of water, and consequently they do not require and cannot grow weeds that thrive when there is plenty of water. Continue Reading →

Minerals: The Big Four for Soil Health

Minerals and their respective roles in achieving healthy soil is a common topic of discussion among agriculture consultants and farmers. A long time ago, when I was going through my initial soil balance training, mineral balance was all that we talked about. Get the minerals right, address calcium and get it to 68 percent base saturation and all will be great.

soil aggregation

Healthy, well-mineralized soils have good aggregation.

The physical and biological aspects of soil weren’t even part of the discussion. Even alternate mineral sources were just touched on. Potassium chloride (KCl) was a no-no due to the high salt index and the chloride, as was dolomitic lime due to our already high magnesium soils. Also on this “not to be used” list was anhydrous ammonia because of its damaging effects on soils. The concept of soil correctives and crop fertilizers wasn’t talked about either, nor was the idea of different calcium sources for different soil conditions. The balance of nutrients on a soil test was the only goal.

Now, looking back, I can certainly see that wasn’t the whole picture. What about the biology and the physical structure? How about making a fertilizer that not only delivered soil minerals but did so more efficiently? Why not have fertilizer that can balance the soluble to the slow release, make sure carbon is added for the buffering effect and provides something for the minerals to attach to so that it is “soil biology food”? Soil health is the capacity to function without intervention; therefore minerals are certainly a part, but not the whole of soil health. Continue Reading →

The Soil Food Web: A World Beneath Our Feet

The soil food web: Unseen beneath our feet, there dwells a teeming microscopic universe of complex living organisms that few humans ever consider. In one teaspoon of soil alone, there may be over 600 million bacterial cells, and if that soil comes from the immediate root zone of a healthy plant, the number can exceed a million bacteria of many different species. These bacterial cells exist in complex predator-prey relationships with countless other diverse organisms.

This topsoil food web forms the foundation for fertile, healthy soil, for healthy plants, and ultimately for a healthy planet. It is an essential but exceedingly delicate foundation that even the brightest scientists know very little about.

Dr. Elaine Ingham has been researching this tiny universe for nearly 20 years. She has sought to understand the importance of these organisms and the relationships that exist between them, and to elucidate the effects that various agricultural practices have on this vast network of life.

Continue Reading →

Healthy Soils for a Healthy Life — Increasing Soil Organic Matter through Organic Agriculture

Better infiltration, retention and delivery to plants helps avoid drought damage. Organic is on the left, conventional on the right. Photo courtesy of Rodale Institute

Better infiltration, retention and delivery to plants helps avoid drought damage. Organic is on the left, conventional on the right. Photo courtesy of Rodale Institute

by André Leu

This year has been declared the International Year of Soils by the 68th UN General Assembly with the theme “Healthy Soils for a Healthy Life.” I am particularly pleased with the theme because this is a message that we in the organic sector have been spreading for more than 70 years, and at first we were ridiculed. Now there is a huge body of science showing that what we observed in our farming systems is indeed correct.

“Organic farming” became the dominant name in English-speaking countries for farming systems that eschew toxic, synthetic pesticides and fertilizers through J.I. Rodale’s global magazine Organic Farming and Gardening, first published in the United States in the 1940s. Rodale promoted this term based on building soil health by the recycling of organic matter through composts, green manures, mulches and cover crops to increase the levels of soil organic matter (SOM) as one of the primary management techniques.

Numerous scientific studies show that SOM provides many benefits for building soil health such as improving the number and biodiversity of beneficial microorganisms that provide nutrients for plants, including fixing nitrogen, as well as controlling soilborne plant diseases. The decomposition of plant and animal residues into SOM can provide all the nutrients needed by plants and negate the need for synthetic chemical fertilizers, especially nitrogen fertilizers that are responsible for numerous environmental problems. Continue Reading →